Single Master HDR Architecture

Gary Demos, Image Essence LLC

HPA

Feb 2017

HDR Landscape

- Cameras have ever-widening range and ever-lowering noise floor
- Displays have also greatly expanded bright range, and some display technologies have greatly expanded dark range
- Some test scenes being shown at tradeshows, especially in the 400nit to 1000nit range, are great to look at
- Some test scenes being shown at tradeshows, mostly above
 1500nits, appear harsh and difficult to watch (although also fascinating)
- Gaining control of the aesthetics of HDR content is a primary goal
- Reproduction of the appearance of the HDR master is also a primary goal

Dangers of "Grading to Glass" to Master HDR

- If using PQ, pixel brightness above the mastering display's range will not be visible (e.g. 1000nit and 2000nit pixels side-by-side look identical on a 1000nit display)
- Color outside P3 gamut with 2020 container has a similar issue, (e.g. a pixel outside P3 and at the P3 boundary can look identical on a P3 display)
- Only one surround is typically utilized during mastering (e.g. dark surround, 5nits, 20nits, ?nits). Presentation may differ in the consumer home.
- Masters created this way should be "inverted" into a neutral form which is independent of the specific display and surround in order to be utilized on displays having different bright or dark range, and/or different gamut, and/or different surround.
- Such inversion may not always be possible, or may be flawed

For these reasons, display-referred HDR masters are problematic

- A "neutral form" is required for the HDR master
- My preference is scene-referred linear light
- The single master HDR system's goal is to work out the mechanisms that provide a consistent appearance, corresponding to the creative intent for the mastered appearance
- This must be done without being (strictly) display referred

Strawman Requirement for HDR/Single-Master System Architectures:

Must AT LEAST be able to reproduce mastered appearance over 150nit-1200nit (three stops) range and P3 gamut

Everything else is "extra" capability

The SDR end of things:

- May be possible to go to lower brightness with a single HDR master, but that remains an open issue.
- The assumption is that 50nits (e.g. DCinema) and 100nits (e.g. Rec709) probably require a separate grade for optimum results (e.g. using "power windows").
- The demonstration here at HPA 2017 goes down to 150nits.

Light Energy Linearity

Display/Projection Invariance

Linear Scene-Referred Light

Linear Display/Projector-Referred Light

(both can be read directly with a Spectral Radiometer)

Feb 2017 Gary Demos Presentation to HPA

7

- BT.2100 and ACES pursue the definition of an "OOTF"
- The OOTF is the key to all forms of "color science"
- The centerpiece of the OOTF is also known as "color rendering"

History

- In search of linearized system architecture
- prototype ACES-like versions:
- In the lineage of "Uchida Tune" RRTs, using the DC22 look reference
- These ACES versions prighten and darken while retaining fixed chromaticities

Feb 2017 Garv Demos Presentation to HPA

ACES Oct2012 Emmy

Back rows LtoR: ?(Fuji?), George Joblove, M. Uchida, Scott Dyer, Alex Forsythe, Harald Brendel, Joseph Goldstone, Floiran Kainz, Lars Borg, Gary Demos

Front Row: Jack Holm, Jim Houston, Ray Feeney, Andy Maltz

A dozen other ACES contributors not shown here, such as Doug Walker, Iwaki-san, John McElvain

Modular ACES-like version

- "gd10" developed as a prototype ACES-like version in 2013
 - modular
 - rendering tone curve down through zero, to negative values
 - rendering "nugget", in output portion of split color rendering module
 - new theory, "one size fits all" may not be workable for rendering appearance
 - one favored rendered appearance module, "full" with two bright behaviors:
 - bright end opened up and saturation-preserving vs.
 - bright end rolled off with desaturation (best for faces)
 - "full" appearance based on ACES non-HDR "DC22" look reference (note: ACES v0.1x, v0.2x, and v0.7x all used the DC22 look reference)

Fundamental brightness rendering S-curve (key to end-to-end OOTF)				Slope 1.0 (out = in)	Robust for H	DR
				1.00E+05			
				1.00E+04		1	
	LAD maps 0.18 to 0.10		1.00E+03		v0.22 tone curve		
			0 1.00E+02	V0.22			
	(this plus whitepoint			1.00E+01			_
		sets numeric scale)		1.00E+00			
10	-8	-6	-4	-2 1.00E-01 0	2	4	6
	v0.22 tone curve		1.00E-02				
				1.00E-03			
		X	1	1.00E-04			_
		/		1.00E-05			_
	Optimal Noise		1.00E-06			_	
	Properties	SIC	Slope 0.02	1.00E-07			_
		(down through zero)	hrough zero)	1.00E-08			
	/ -		1.00E-09				
				1.00E-10			

2015 ASC work on the HDR_System

- Radiometric capabilities are new in HDR Single-Master System, as are room ambient compensation, and for "colorfulness" compensation (the Hunt effect)
- Emphasis on MDR/HDR (and not on 50nit/100nit DCinema/Rec709)
- rendering split into optional aesthetic rendering preamble(s), and nugget
- display-type transform split into display/projector appearance attributes, and "coding on the wire" attributes (which have no affect on appearance)
- Top end of rendering tone curve opened up to unity slope (out = in)
- Top end reduction and desaturation moved into optional preambles

Modular Architecture

Gary Demos Presentation to HPA

Modular Architecture (detail)

Modular Architecture (detail)

end-to-end should be a no-op (coding on the wire)

Caveats:

- Top end of PQ may be difficult
- Gamut boundary soft-clip (if present)
- Bit depth <-> perceptual threshold
- Dark behavior (near black)
- Larger bright area darkening
- Function <-> perceptual threshold

My Preference:

Configuration:

another viewpoint: this all disappears!

- Gamut in signal matches display gamut (e.g. P3)
- 1.0 is display maximum for each of R, G, B, and W
- Linear light represented as half-float (aka "FP16"), will be below perceptual threshold
- Every different value in the 0.0 to 1.0 range for R, G, and B are visually distinct

Single Master HDR Architecture Comparison vs ACES

Single Master HDR_System approach

• Aesthetic rendering preambles, and grading, are not normative. The result of these is embodied in the radiometric HDR_System master.

- The use and meaning of the HDR_System master is normative
- The entire normative processing for the HDR_System can move into display/projector electronics, if the HDR master is directly distributed (e.g. using a floating point codec). This is a migration path.

• The HDR_System master maintains the linear light characteristics of the master, even through grading (as demonstrated by the Lustre grading tests). No limitations on future use of such a linear light ("aces-prime") graded master.

• This enables the HDR_System to support single-master HDR (within the HDR_System's range and gamut).

• The resulting HDR_System master obtains radiometric integrity, which includes long-term defined meaning of an HDR master

Basis of the Single Master HDR System

Key design principle for the correct presentation *appearance* for the HDR_System master:

- Brightness moves
- Chromaticity does not*

* (except for Hunt effect saturation compensation on high brightness displays)

Discovery During Lustre v0.7 grade vs. original ICAS

-original and grade look the same except for intentional adjustments

- the graded image is thus in linear scene-referred light
- no loss of high-end color saturation
- no noise build up in dark areas (nor at any brightness nor color)
- an HDR master in this form is unassailable cannot be questioned regarding "gradeability"
 - Similar to film negative/digital-film-density intermediate
 - Full camera range and gamut preserved (if desired)
 - Creative adjustments in grading process are not tied to specific displays (neither at mastering nor at distribution/presentation)

Architectural Implications of this Single-Master HDR Architecture

- No use of metadata in this example architecture (for now)
- Masters can be created in full range and gamut like camera originals (similar to film negative being a master, but having even more range)
- Scene light linear physics is then fundamental to the definition/specification of the archival master
 - defined using D60 or D65 whitepoint, and LAD
 - full gamut (e.g. ACES RGB or XYZ, adding spectral info if available)
- Each distribution display should have a mechanism to compensate for its own inherent properties:
 - Brightness (including large area brightness dimming)
 - Gamut
 - Ambient surround
 - Bit depth (dithering down from higher bit depth source(s), when avail.)
- Independent of "coding on the wire" attributes (e.g. EOTF nulled out)

Appearance Compensation

Pixel-independent (not regional) appearance effects:

* Abney: Constant hue vs. saturation goes along curved lines

* Stevens: Constrast increases with luminance

* Hunt: Colorfulness increases with luminance

x Bezold-Brucke: Hue changes with luminance

x Helmholtz-Kohlrausch: Brightness increases with color saturation

* modeled and compensated

x to be explored

Appearance Compensation (continued)

Regional and time-sensitive appearance effects:

- * **Bartleson-Breneman: Contrast increases with surround luminance** x Appearance effect involving contrast changing with subtended angle?
 - Surround white adaptation when different from displayed white
 - Color and brightness persistence effects (including cone-bleaching)
 - Regional optical illusions (often related to localized surround adaptation)
 - * modeled and compensated
 - x to be explored
 - not sure what can be done

LAD Must Move!

- LAD (Laboratory Aim Density, mid-grey)
 - LAD was the main brightness anchor for SDR film
- LAD needs to vary somewhere in-between absolute nits (e.g. PQ) and percent of max (e.g. SDR LAD is set at 10% of Max)
- LAD (mid-grey) would be 1000nits (10% of Max) if scaling up SDR to max 10,000!
- LAD would be deep 0.1% black if held at SDR's 10nits vs PQ max 10,000!
- There is a vast region between 0.1% of peak and 10% of peak
 - 0.1% to 10% is 100-to-1 range!
 - LAD (mid-grey) belongs somewhere in this range
 - However, LAD should not be fixed as percentage of Max, nor absolute nits
- LAD needs to move with respect to display maximum, and ambient surround

Brightness Compensation

Appearance Brightness Compensation Built On Variable Asymptote (thus, LAD Moves):

Low Portion is Straight Line To Zero

- no s-curve at bottom
- lifted display black compensation requires better than crude Lb
- dark appearance and compensation is an open topic

Diffuse White vs. Lights and Highlights

- Diffuse white (e.g. a white shirt in the scene) needs to move similar to LAD
- Lights and Highlights can vary in brightness
 - but not too much
 - must think about the 3stop max range we are considering:
 - 150nits to 1200nits
 - consider 100nit diffuse white is 1% of 10,000nits!
 - 1% black in SDR is mid-black (between ½% black and 2% high black)
 - need to balance max bright capability with natural appearance
 - the ambient surround level also is a factor
- When mastering, need to specify allowed variability for diffuse white, lights, and highlights
 - Lock down the diffuse white allowed variability when making the master
 - Lock down the shiny reflective highlight behavior also
 - Lock down the behavior of white and colorful (e.g. neon) lights
 - Enforce consistent bright regions between different composite elements
 - Manage brightness of highlight glints on the eyes of actors in close-ups

Bright and Too Colorful

Hunt Effect (colorfulness):

- Function of absolute brightness
- Applies equally to saturated and desaturated colors
- Applies more to brighter parts within a frame
- Compensation via desat needs to follow constant-hue curves and applies luminance brightness adjustment (e.g. desat blue darkens)
- Seems to affect colorfulness over very large dark to bright range

Colorfulness questions to explore:

- Do people partially adapt to saturation levels at higher brightnesses?
- If so, is such adaptation affected by the surround appearance?
- Is it useful to darken bright saturated colors?
 - HLG asserts this
 - Should desaturation and darkening of bright colors be combined?
- Is a simple overall (all brightnesses for a given peak) desaturation sometimes adequate? Over what range if so?

Summary

- Scene referred
- Built on "radiometric" (chromaticity-preserving) spine

This enables:

- colorfulness compensation
- ambient surround compensation
- unambiguous masters
- end-to-end calibration
- appearance attributes created into master, reproducible subsequently over MDR/HDR range and gamut
- Master, after appearance module/grading defined by linear scene light, LAD, and D60 (or D65)
- Work not complete, but reasonably far along

View Demonstration in the Innovation Zone

(This Architecture Works!)

Note: appendices follow, FYI

Also check out:

SMPTE (smpte.org): education -> on-demand-webinars -> 23April2015 "HDR Intermediate"

garyd@alumni.caltech.edu

Appendices:

- Demonstration Descriptions
- Further Investigations
- Tips for HDR Mastering
- Avoiding Structural Limitations
- The Film Density Model
- Pixel Meanings
- Meaning of "Color"

Demonstrations

Feb 2017 Gary Demos Presentation to HPA

Demonstration of MDR and HDR matching (150nit to 1200nits)

- Left image(s) covered with 0.3 ND Filter (one stop)
- Display brightness compensation
- "colorfulness compensation" for the Hunt effect

Demonstrations (continued)

- Side-by-side 0.7 Lustre grade of ICAS vs. F65 camera-native (via Sony Raw Viewer)
- Face highlight desaturation demonstration
- Bright region desat for Hunt Effect compensation, along constant-hue curves
- Near 60fps realtime 10bit UHD decoding with 257-cubed 3D LUT in GPU
- 24 fps realtime 12 bit 4k decoding running "full" algorithms in GPU
- MacPro Laptop, 500nits, P3 gamut, w/ companion LG 5k 27" Thunderbolt-3 display
- On-screen graduated neutral surround for D60 and D65 (for use when HDR mastering)
- Behind-screen adjustable ambient surround

Demonstrations (continued)

- Radiometric rendering
 - No preamble, nugget only
 - Chromaticity-preserving appearance compensation only
 - Brightening and darkening as a function of hue:
 - Red and Yellow brighter
 - Green, Cyan, Blue, and Magenta darker
 - End-to-end chromaticity preserving (i.e. hue and saturation preserving)
 - No Colorfulness compensation (but could be added using HLG-style darkening)
- Not fully aesthetic (e.g. not DC-2.2 look), but not bad (have a look)

Demonstrations (continued)

Comparison of Appearance vs. ACES 1.0.2

- Comparison of "Full_nobr_fc" aesthetic rendering preamble vs. ACES 1.0.2 RRT with 2020gamut/2084PQ_1000nit_EOTF HDR ODT
- ACES 1.0.2 RRT and HDR ODT from BlackMagic DaVinci Resolve

Single Master HDR Appearance Comparison vs ACES 1.0.2

Gary Demos Presentation to HPA Further Investigations

Feb 2017 Gary Demos Presentation to HPA

Investigations and Verifications of Current Version:

- Yellow-biased norm
- Tone curve section fit refinement
 - low linear, .02 slope, down through 0.0
 - mid tries to hit LAD (.18 maps to .10)
 - high linear, in = out
- Matrix from ACES RGB to P3 RGB gamut reduction issues
 - matrix has ~2.0 red-to-red term
 - negative terms can take all positive input to negative output
 - input currently limited to all positive
 - how to soft-clip gamut top and bottom on hue curves/luminance?
- D60 (ACES whitepoint) vs. D65 (HLG/BT.2100 and PQ/BT.2020 whitepoints)
- On-screen ambient and/or behind-screen ambient during mastering

Investigations and Verifications of Current Version (cont.):

- Specific function of max brightness
- Specific function of ambient surround
- Currently max and surround are combined in a single adjustment
- Active preambles:
 - Null (radiometric)
 - Full
 - Full rolled-off-desaturated brights
 - gd9 desaturated brights
 - gd9 rolled-off-desaturated brights
- Inactive preambles:
 - gamma_and_mat, simple, moderate, double, some "looks"
- Feasible preamble: ACES 1.0 (may not be orthogonal to all 1.0 ODTs)

Reproduces desired appearance based upon scene light energy

Tips for Using the HDR Mastering Display

Helpful procedures for HDR display during mastering:

- Test various surround levels (e.g. adjusting onscreen appearance vs. surround brightness, using the methods described here)
- Lift darks by two or three stops to inspect
- Drop brights by two or three stops to inspect
- Inspect HDR composites lifted, darkened, desaturated, and at reduced contrast
- Attempt to inspect every mastered pixel value within display's range/gamut
- Alternatively, put mastering display into a mode where every pixel value is visibly distinct, and limit the master to that range/gamut
 - e.g. P3 gamut 10/12bit gamma 2.6 w/small range/gamut edge margin
 - Not sure how to obtain a neutral form (e.g. scene-referred) doing this

Avoiding Structural Limitations

When R, G, and B independently "ride" an S-Curve

Orange **Desaturated** Hue Pushed **Toward Red** Orange **Boosted Saturation** Hue Pushed **Toward Red** Orange Boosted SaturationOrange DesaturatedHue Pushed Toward YellowHue Pushed Toward Yellow

This is OK for an optional "Look", but creates difficulty when mandatory ---

Inherently challenging to attempt building a single-master HDR system from this

Avoiding Structural Limitations

What the mandatory parts of this HDR architecture do NOT do:

- R, G, and B do <u>not</u> ride the tone curve independently (yielding hue and saturation varying as a function of brightness)
- No Lb (black offset, e.g. BT1886) crude processing
- No rendered-in display appearance compensation processing
- No mandatory modification of hue and saturation
- No mandatory desaturation of darks
- No mandatory desaturation of brights
- No fixing to absolute nits (cd/m²)

– No!

The Film Density Model

Film Density

Pixel Meanings

Feb 2017 Gary Demos Presentation to HPA

Pixel Linear and Nonlinear Meanings and their Properties

- Gamma 2.22 + linear black toe (Rec709, BT1886), OETF
- Gamma 2.4 +/- Lb (BT1886), EOTF (Lb is crude black offset)
- Mis-use of "linear", meaning either or both of the above
- Gamma 2.6 (DCinema/DCI/DC-28), EOTF, no black compensation
- Correct use of "linear", gamma 1.0
 - Scene referred linear is the radiometry physics of the scene
 - Display referred linear is the radiometry physics of the display
- Perceptual Quantizer (BT.2084), EOTF, HLG (BT.2100), OOTF+
- Film Density (a measure of negative density)
- Various quasi-logs optimized for cameras (S-Log, Log-C, Filmstream, etc.)

Pixel Representation Properties (cont.)

- Pixel "coverage" is inherently linear (anti-aliasing), but may interact via sub-pixel specific orientations
- Pixel "transparency" and density is inherently logarithmic (.3ND + .3ND = .6ND in logarithmic density = 0.5 x 0.5 = .25 linear
- All non-linear formats will alias during processing and compositing
- Increasing resolution helps (less prominent aliasing artifacts)
- Increasing dynamic range hurts (more prominent aliasing artifacts)
- Aliasing and cross-talk issues are inherent in "Non-Constant-Luminance"
- 4:2:0 is usually applied in non-linear spaces, e.g. HEVC Main-10

Meaning of "Color"

Feb 2017 Gary Demos Presentation to HPA

Multiple Meanings of "Color"

- As perceived (appeareance)
- As a measurable "chromaticity"
- Chromaticities imply color matching functions ("CMF's)
- There are multiple relevant CMF's (e.g. 1931 2deg, 1964 10deg, 170-1)
- As linear weights of sensing or emissive spectra, measurable with a spectral radiometer
- As the combined meaning of illuminating light spectra together with surface spectral absorption/reflectance
- As surface spectral absorption itself
- Emissive color lights (e.g. neon), etc.

<end>