

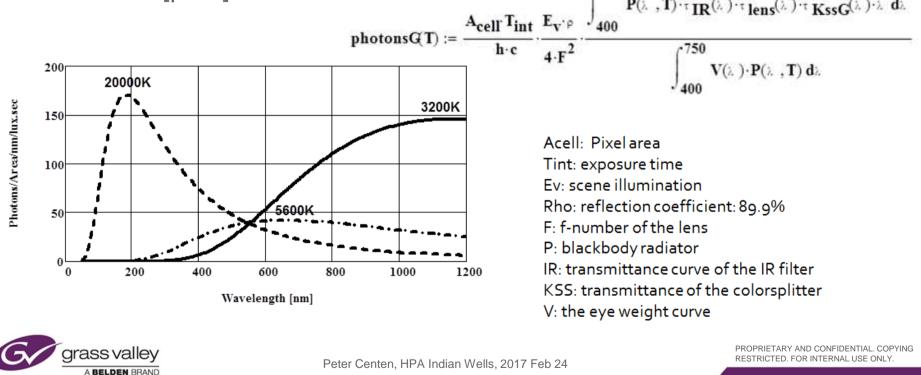
<u>Agenda</u>

- Sensitivity
- Sharpness
- Depth-of-field
- Summary
 - The good news
 - The bad news for sports and the good news for drama
 - What can one do for sports

Everything between 11 mm and 44 mm

Sensitivity's©

- ♣ 1920 or 2048, 3840 or 4096, 7680 or 8192
 - For an engineer just 6.7%
 - But the sensitivity's are at least 100%
 - Funny: 1080 stays 1080 where the raster is 1125x2200



Sensitivity

Photon flux of a blackbody radiator at 3200K, 5600K and 20000K, Area is in [µm2].
⁷⁵⁰
P(\lambda, T) \cdot T R(\lambda) \cdot T lens(\lambda) \cdot T KssG(\lambda) \cdot \lambda d\lambda

Sensitivity

- ♣ 2000 lux; 89.9 %; 3200K, f/11
- Blackbody radiator 3200K: 6000 photons/lux.sec/um2@BW+IR
 - A 5um pixel collects in 16.67ms this is HDTV

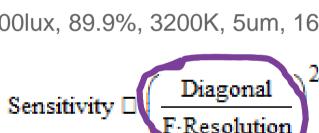
Mastergain	Red	Green	Blue
0dB	3206 photons	3029 photons	1114 photons

Peter Centen, HPA Indian Wells, 2017 Feb 24

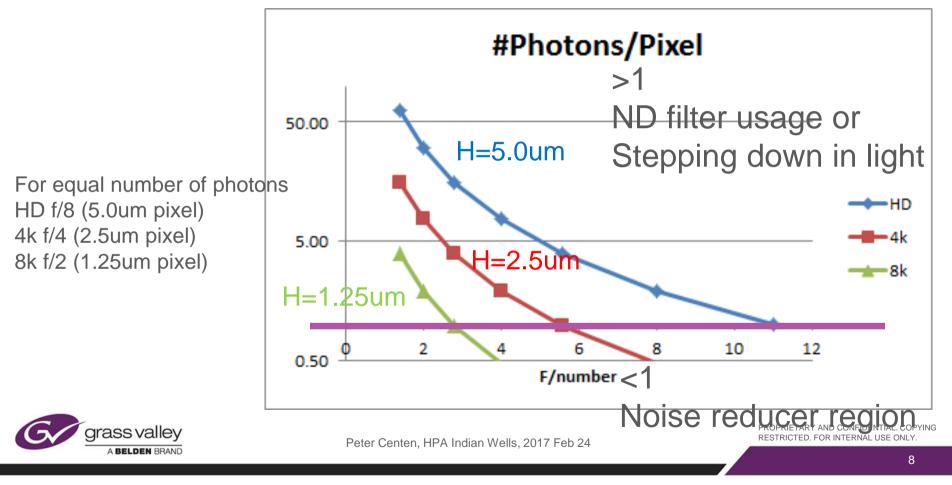
Sensitivity

- Pixel area
 - Pixel area H*H
- #photons
 - F: f/number
 - 3000 photons in green at f/11, 2000lux, 89.9%, 3200K, 5um, 16.7ms
- Noise
 - Readnoise, noise black
 - Shotnoise, photon generated

✤ Scaling


When ratio between pixel-size and f-number (H/F) is constant then the number of photons on the pixel is constant

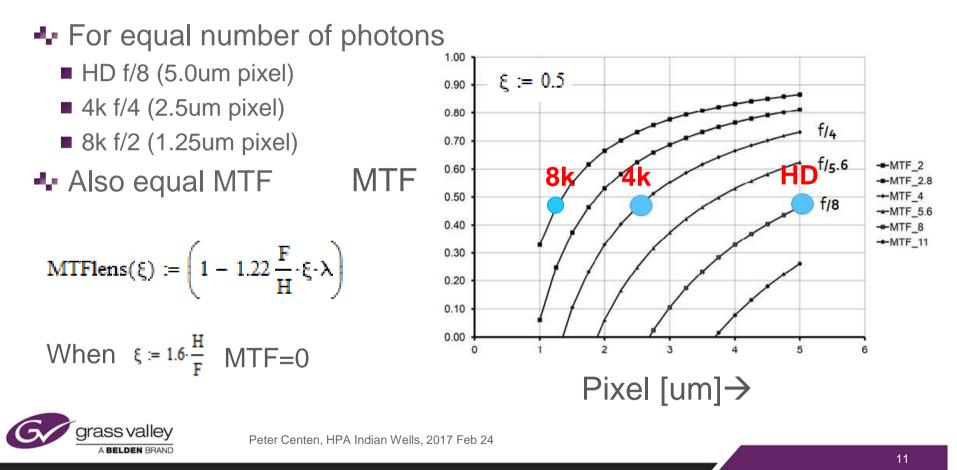
Peter Centen, HPA Indian Wells, 2017 Feb 24


7

Sensitivity 🗆

 $\left(\frac{H}{F}\right)$

Sensitivity at 2/3" as function of f-number



MTF at Nyquist

- An imager is a 2-dimensional spatial sampler.
- The Nyquist frequency is half the sample frequency. It is the frequency up to which one can reconstruct a sampled signal
 - The sample frequency can be expressed in lp/mm and is 1/pixel-pitch

Diagonal	8k	4k	2k	Diago	nal	8k	4k	2k
[mm]		Pixel [um]		[mr	n]	Ny	quist [lp/r	nm]
8	0.91	1.82	3.6	8		551	275	138
11	1.25	2.50	5.0	11		401	200	100
22	2.50	4.99	10.0	22	2	200	100	50
24	2.72	5.45	10.9	24	L .	184	92	46
35	3.97	7.94	15.9	35	;	126	63	31
44	4.99	9.99	20.0	44	L .	100	50	25
G/	grass valley	La		main ten, HPA Indian Wells, 2017 Feb :	24			PRIETARY AND CONF
	A BELDEN BRAND						_/	

Lens MTF at Nyquist for different pixels

Perceived sharpness

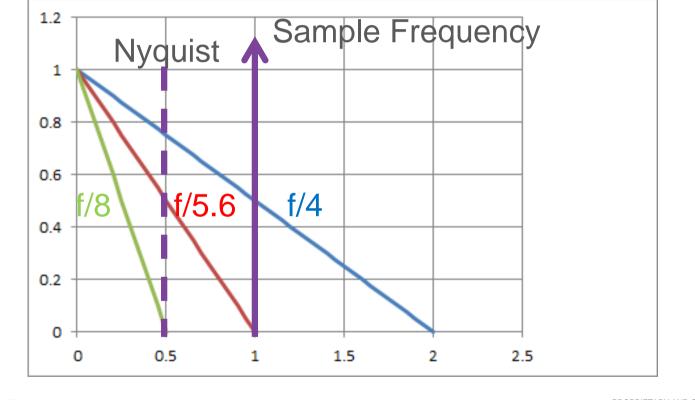
- Otto Schade
- Area under squared (Modulation-Transfer-Function) MTF-curve
 - Normalized spatial frequency (fx) with pixel-pitch/width (H) $\xi := fx \cdot H$

Sharpness_MTF :=
$$\int_{0}^{0.5} MTF(\xi)^2 d\xi$$

Nyquist is half the sample frequency

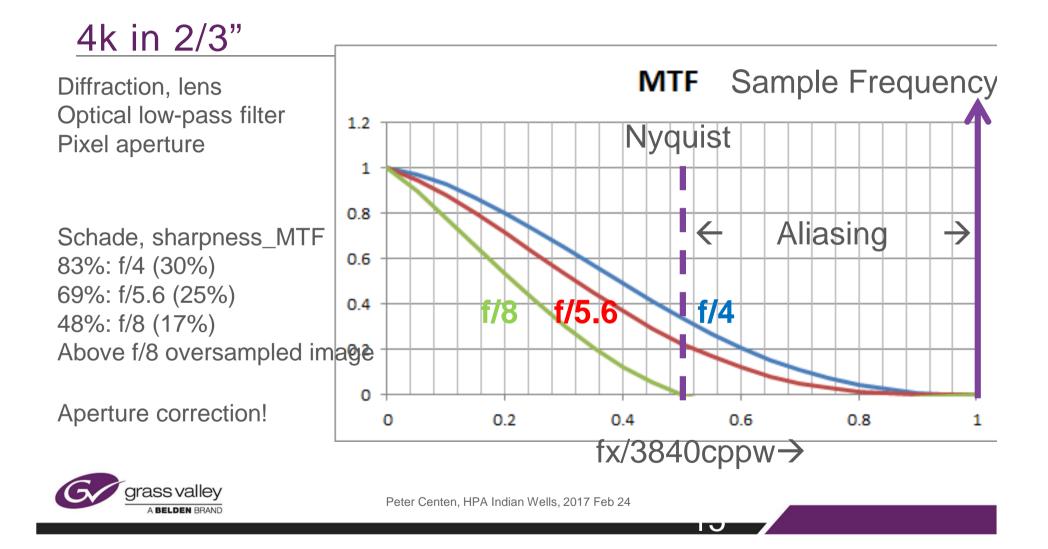
Sharpness

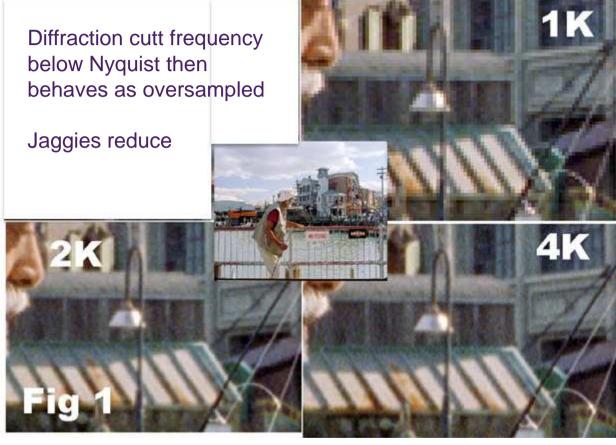
- Normalized spatial frequency (fx) with pixel-pitch/width (H) $\xi := \mathbf{fx} \cdot \mathbf{H}$


•• Optical low pass filter: MTFolp(
$$\xi$$
) := $\cos\left(\frac{\pi}{2} \cdot \xi\right)$

✤ Pixel aperture: $MTFpixel(\xi) := sinc(\xi)$

$$\blacksquare \text{ Diffraction limited, lens } \operatorname{MTFlens}(\xi) := \left(1 - 1.22 \frac{F}{H} \cdot \xi \cdot \lambda\right)$$
$$\operatorname{MTF}(\xi) := \left| \left(1 - 1.22 \frac{F}{H} \cdot \xi \cdot \lambda\right) \cdot \operatorname{sinc}(\xi) \cdot \cos\left(\frac{\pi}{2} \cdot \xi\right) \right|$$



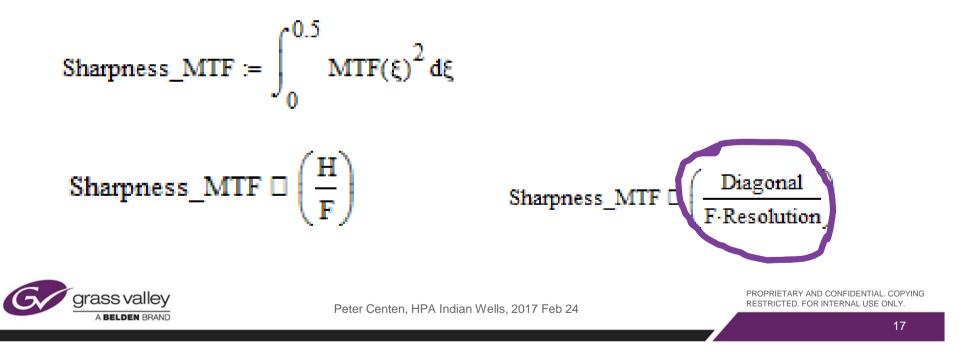

Diffraction and a 2.5um pixel: 4k in 2/3"

Peter Centen, HPA Indian Wells, 2017 Feb 24

SMPTE 2001 Sydney Australia, EVOLUTION OF RESOLUTION IN FILM SCANNERS, By P R Swinson . Cintel International

Peter Centen, HPA Indian Wells, 2017 Feb 24

RESTRICTED. FOR INTERNAL USE ONLY.

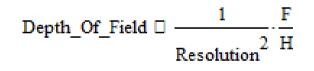

Sharpness

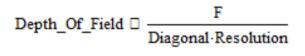
• MTF: MTF(
$$\xi$$
) := $\left(1 - 1.22 \frac{F}{H} \cdot \xi \cdot \lambda\right) \cdot \operatorname{sinc}(\xi) \cdot \cos\left(\frac{\pi}{2} \cdot \xi\right)$

$$\xi := \mathbf{f} \mathbf{x} \cdot \mathbf{H}$$

Scaling

Sharpness utilization is the same when ratio F/H is the same

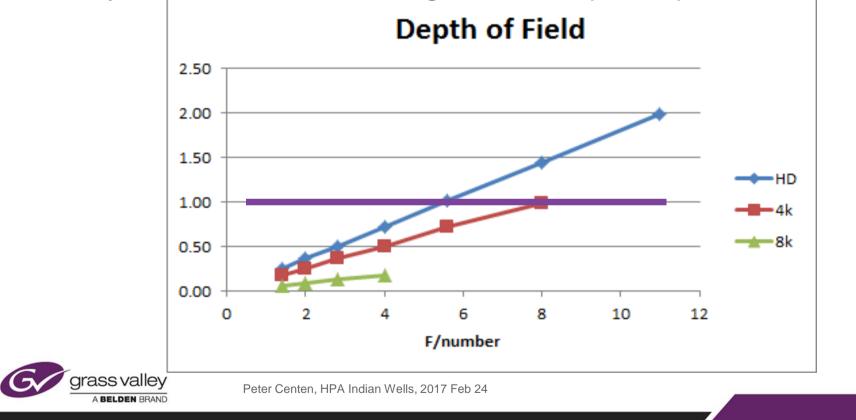




Depth-of-Field

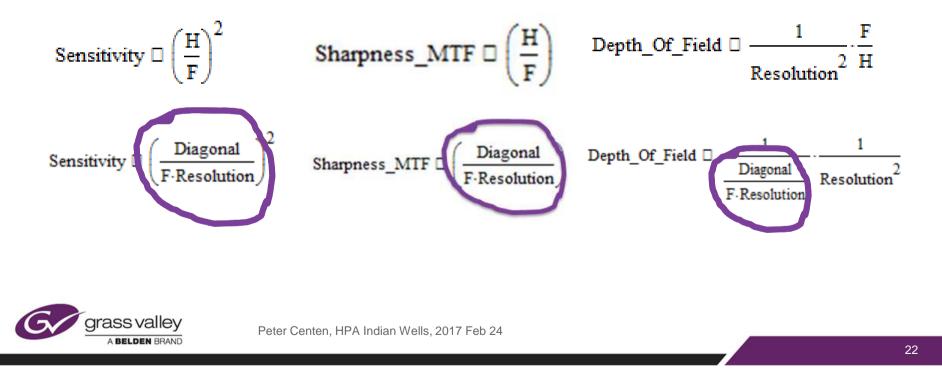
- Depth-of-Field
- Assumption: Same picture in same format
- The lesser light in, the larger DOF

✤ Scaling



Depth-of-Field in 2/3"

Only in usable f-number range from sharpness point of view


20

Scaling summary

- Pixelsize = H, f/number of the lens = F, Resolution = 2k, 4k, 8k
- Diagonal is proportional with H*Resolution

11mm

DOF	11	8	5.6	4	2.8	2	1.4
HD	1.98	1.44	1.01	0.72	0.50	0.36	0.25
4k	0.99	0.72	0.50	0.36	0.25	0.18	0.13
8k	0.49	0.36	0.25	0.18	0.13	0.09	0.06

11 8 5.6 4

HD	0.66	0.48	0.34	0.24	0.17	0.12	0.08
4k	0.33	0.24	0.17	0.12	0.08	0.06	0.04
8k	0.16	0.12	0.08	0.06	0.04	0.03	0.02

2.8

2

1.4

Nyquist limited

sharpness	11	8	5.6	4	2.8	2	1.4
HD	504.23	633.80	758.70	852.46	928.29	981.47	1022.73
4k	514.61	707.58	993.28	1267.59	1517.40	1704.93	1856.59
8k	514.61	707.58	1010.83	1415.17	1986.56	2535.19	3034.80

sharpness	11	8	5.6	4	2.8	2	1.4
HD	873.05	937.01	990.54	1027.39	1055.64	1074.76	1089.26
4k	1333.20	1547.49	1737.81	1874.02	1981.08	2054.78	2111.28
8k	1543.78	2068.67	2639.68	3094.98	3475.63	3748.04	3962.15

Diffraction limited

#photons/pixel	11	8	5.6	4	2.8	2	1.4	<pre>#photons/pixel</pre>	11	8	5.6	4	2.8	2	1.4
HD	1.00	1.90	3.87	7.58	15.48	30.34	61.92	HD	9.03	17.07	34.83	68.26	139.32	273.06	557.26
4k	0.25	0.47	0.97	1.90	3.87	7.58	15.48	4k	2.26	4.27	8.71	17.07	34.83	68.26	139.32
8k	0.06	0.12	0.24	0.47	0.97	1.90	3.87	8k	0.56	1.07	2.18	4.27	8.71	17.07	34.83
8k						1.90	3.87	8k	0.56	1.07	2.18	4.27	8.71	17.07	

DOF

grass valley

A BELDEN BRAND

The good news

- Surprise

- The following combination of pixel-size and f/number results in the same sensitivity (SNR) and sharpness utilization:
- In 2/3" = 11mm
 - 2k pixels of 5um af f/11
 - 4k pixels of 2.5um at f/5.6
 - 8k pixels 1.25um at f/2.8.
- But also in 44mm
 - 8k pixels of 5um af f/11
 - 16k pixels of 2.5um at f/5.6

The bad news for sports and the good news for drama

- DOF goes down dramatically
 - Fast focussing difficult in sports
 - In 2/3" = 11mm
 - 2k pixels of 5um af f/11 DOF=y
 - 4k pixels of 2.5um at f/5.6 DOF=y/4
 - 8k pixels 1.25um at f/2.8 DOF=y/16
 - And in 44mm
 - 8k pixels of 5um af f/11 DOF=y/16
 - 16k pixels of 2.5um at f/5.6 DOF=y/64
 - 32k pixels 1.25um at f/2.8. DOF=y/256

What can one do for sports

- Accept more noise in black (readnoise) and in grey (shotnoise)
- Now the lens can be closed further
 - Lesser photons on the pixel, 6dB/f-stop
 - SNR reduces 6dB/f-stop
 - Sharpness reduces. Diffraction cutt frequency halves per 2f-stop's.
- When $\frac{H}{F} = 0.318$ then MTF=0 at Nyquist
- Sharpness can be enhanced
 - Increases noise again, noise reducer has to do more
 - When the diffraction cutt is below Nyquist no correction possible

Peter Centen, HPA Indian Wells, 2017 Feb 24

Sensitivity $\Box \left(\frac{H}{F}\right)^2$

8

$$= 1.6 \cdot \frac{H}{F}$$

26

